Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 257(5): 96, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041311

RESUMO

MAIN CONCLUSION: The cumulative action of combinations of alleles at several loci on the wheat genome is associated with different levels of resistance to late maturity α-amylase in bread wheat. Resistance to late maturity α-amylase (LMA) in bread wheat (Triticum aestivum L.) involves a complex interaction between the genotype and the environment. Unfortunately, the incidence and severity of LMA expression is difficult to predict and once the trait has been triggered an unacceptably low falling number, high grain α-amylase may be the inevitable consequence. Wheat varieties with different levels of resistance to LMA have been identified but whilst some genetic loci have been reported, the mechanisms involved in resistance and the interaction between resistance loci requires further research. This investigation was focused on mapping resistance loci in populations derived by inter-crossing resistant wheat varieties or crossing resistant lines with a very susceptible line and then mapping quantitative trait loci. In addition to the previously reported locus on chromosome 7B for which a candidate gene has been proposed, loci were mapped on chromosomes 1B, 2A, 2B, 3A, 3B, 4A, 6A and 7D. These loci have limited effects on their own but have a cumulative effect in combination with each other. Further research will be required to determine the nature of the causal genes at these loci, to develop diagnostic markers and determine how the genes fit into the pathway that leads to the induction of α-AMY1 transcription in the aleurone of developing wheat grains. Depending on the target environmental conditions, different combinations of alleles may be required to achieve a low risk of LMA expression.


Assuntos
Triticum , alfa-Amilases , Triticum/genética , alfa-Amilases/genética , Locos de Características Quantitativas , Fenótipo , Genótipo
2.
Planta ; 255(6): 119, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522329

RESUMO

MAIN CONCLUSION: α-Amylase synthesis by wheat aleurone during grain development (late maturity α-amylase) appears to be independent of gibberellin unlike α-amylase synthesis by aleurone during germination or following treatment with exogenous GA. Late-maturity α-amylase (LMA) in wheat (Triticum aestivum L.) involves the synthesis of α-amylase by the aleurone tissue during grain development. Previous research identified a putative ent-copalyl diphosphate synthase gene, coding for an enzyme that controls the first step in gibberellin biosynthesis, that underlies the major genetic locus involved in variation in LMA phenotype. The reported results for gene transcript analysis, preliminary gibberellin analysis and the effects of DELLA mutants on LMA phenotype appeared to be consistent with involvement of gibberellin but did not provide definitive proof of a causal link. Conversely, several observations do not appear to be consistent with this hypothesis. In this current study, LMA phenotype, gibberellin profiles and ABA content were recorded for experiments involving susceptible and resistant genotypes, gibberellin biosynthesis inhibitors, genetic lines containing different LMA quantitative trait loci and treatment of distal halves of developing grains with exogenous gibberellin. The results suggested that gibberellin may not be a prerequisite for LMA expression and further that the mechanism involved in triggering α-amylase synthesis did not correspond to the model proposed for germination and gibberellin challenged aleurone of ripe grain. The results provide new insight into LMA and highlight the need to investigate alternate pathways for the induction of α-amylase gene transcription, the function of novel 1-ß-OH gibberellins and other functions of DELLA proteins in developing grains.


Assuntos
Giberelinas , Triticum , Germinação/genética , Giberelinas/metabolismo , Sementes , alfa-Amilases/genética , alfa-Amilases/metabolismo
3.
Front Plant Sci ; 12: 637685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33719315

RESUMO

Many wheat varieties have the potential to develop unacceptably high levels of α-amylase in the grains if exposed to a cool temperature shock or simply cool temperature during the early to middle stages of grain filling. This phenomenon is referred to as late maturity α-amylase (LMA). The enzyme persists in the grain until harvest and may result in wheat with a low Falling Number that does not meet receival and export specifications. Resistance to LMA is therefore a valuable target for wheat breeders and wheat industries in general. Genetic evidence implicating a locus on the long arm of chromosome 7B in variation in LMA phenotype was confirmed in this investigation. Through intensive fine-mapping an ent-copalyl diphosphate synthase (CPS), hitherto named LMA-1, was identified as the likely candidate gene associated with variation in LMA phenotype. Single Nucleotide Polymorphisms (SNPs) within the LMA-1 coding sequence of Chinese Spring, Maringa and Halberd result in either prematurely terminated or functionally altered proteins that are associated with useful levels of resistance to LMA. LMA-1 transcripts detected in de-embryonated grain tissue from around 15 days after anthesis, several days before the synthesis of α-amylase, were low in the resistant varieties Chinese Spring and Maringa compared with LMA susceptible genotype Spica. This was associated with a dramatic reduction in the concentrations of intermediates in the gibberellin biosynthesis pathway such as GA19, evidence that LMA-1 was functioning as CPS in the gibberellin biosynthesis pathway. A survey of a large collection of Australian and international wheat varieties distinguished 9 major haplotypes at the LMA-1 locus. Generally, within classes, there was notable variation for LMA phenotype and evidence for genotypes whose resistance is presumed to be due to genetic loci located elsewhere on the wheat genome. Further investigation is required to characterize the sequence of steps between LMA-1 and α-amylase synthesis as well as to gain a better understanding of the role and potential impact of other genetic loci. Diagnostic markers for sources of resistance and SNP variation reported in this study should assist breeders to deploy resistance associated with LMA-1 variants in breeding programs.

4.
Planta ; 253(1): 5, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387045

RESUMO

MAIN CONCLUSION: Dormancy in white-grained wheat is conditioned by the cumulative effects of several QTL that delay the onset of the capacity to germinate during ripening and after-ripening. Grain dormancy at harvest-ripeness is a major component of resistance to preharvest sprouting in wheat (Triticum aestivum L.) and an important trait in regions where rain is common during the harvest period. Breeding lines developed in Australia maintained their dormancy phenotype over multiple seasons and during grain ripening, the time between anthesis and the acquisition of the capacity to germinate, dormancy release, increased in line with the strength of dormancy. Genetic dissection of two dormant lines indicated that dormancy was due to the cumulative action of between one and three major genetic loci and several minor loci. This presents a significant challenge for breeders targeting environments with a high risk of sprouting where strong dormancy is desirable. Only around half of the difference in dormancy between the dormant lines and a non-dormant variety could be attributed to the major genetic loci on chromosomes 4A and 3A. A QTL that was mapped on chromosome 5A may be an orthologue of a minor QTL for dormancy in barley. At each locus, the dormancy allele increased the time to dormancy release during ripening. In combination, these alleles had cumulative effects. Embryo sensitivity to abscisic acid was related to the dormancy phenotype of the whole caryopsis, however, changes in concentrations of abscisic acid and gibberellins in embryo sections and de-embryonated grains during ripening and after-ripening could not be linked to the timing of dormancy release.


Assuntos
Dormência de Plantas , Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Germinação/genética , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Dormência de Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/crescimento & desenvolvimento
5.
Planta ; 240(6): 1167-78, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25257145

RESUMO

Preharvest sprouting (PHS) and late maturity α-amylase (LMA) are the two major causes of unacceptably high levels of α-amylase in ripe wheat grain. High α-amylase activity in harvested grain results in substantially lower prices for wheat growers and at least in the case of PHS, is associated with adverse effects on the quality of a range of end-products and loss of viability during storage. The high levels of α-amylase are reflected in low falling number, the internationally accepted measure for grain receival and trade. Given the significant losses that can occur, elimination of these defects remains a major focus for wheat breeding programs in many parts of the world. In addition, the genetic, biochemical and molecular mechanisms involved in the control of PHS and LMA as well as the interactions with environmental factors have attracted a sustained research interest. PHS and LMA are independent, genetically controlled traits that are strongly influenced by the environment, where the effects of particular environmental factors vary substantially depending on the stage of grain development and ripening. This review is a summary and an assessment of results of recent research on these important grain quality defects.


Assuntos
Germinação , Sementes/crescimento & desenvolvimento , Triticum/enzimologia , Triticum/crescimento & desenvolvimento , alfa-Amilases/metabolismo , Dormência de Plantas/genética , Locos de Características Quantitativas/genética , Sementes/enzimologia , Sementes/genética , Triticum/genética , alfa-Amilases/genética
6.
Mol Breed ; 33: 519-529, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24532978

RESUMO

Late maturity α-amylase (LMA) is a genetic defect involving the synthesis of high pI isozymes of α-amylase encoded by α-Amy-1 genes during the later stages of grain development. The aims of this investigation were to determine both the number of expressed α-Amy-1 genes and their relative transcript abundance. Sub-cloning and sequencing of expressed high pI α-amylase genes in developing wheat seeds revealed three insertion/deletion patterns in the 3' untranslated region and numerous single nucleotide polymorphisms at the 3' end of α-Amy-1. The genetic variations defined 36 α-Amy-1 gene sequences that were expressed on the onset of LMA in doubled haploid progenies (SpM25, SpM52 and SpM127) derived from the cross Spica (LMA)/Maringa (non-LMA). Five isoelectric point groups were predicted based on the translated partial coding sequences. The potential application of quantitative real-time RT-PCR in screening wheat genotypes for LMA is discussed.

7.
Plant Physiol ; 161(3): 1265-77, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23321420

RESUMO

Late maturity α-amylase (LMA) is a genetic defect that is commonly found in bread wheat (Triticum aestivum) cultivars and can result in commercially unacceptably high levels of α-amylase in harvest-ripe grain in the absence of rain or preharvest sprouting. This defect represents a serious problem for wheat farmers, and apart from the circumstantial evidence that gibberellins are somehow involved in the expression of LMA, the mechanisms or genes underlying LMA are unknown. In this work, we use a doubled haploid population segregating for constitutive LMA to physiologically analyze the appearance of LMA during grain development and to profile the transcriptomic and hormonal changes associated with this phenomenon. Our results show that LMA is a consequence of a very narrow and transitory peak of expression of genes encoding high-isoelectric point α-amylase during grain development and that the LMA phenotype seems to be a partial or incomplete gibberellin response emerging from a strongly altered hormonal environment.


Assuntos
Reguladores de Crescimento de Plantas/farmacologia , Característica Quantitativa Herdável , Triticum/genética , Triticum/fisiologia , alfa-Amilases/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Endosperma/efeitos dos fármacos , Endosperma/enzimologia , Endosperma/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Genótipo , Giberelinas/farmacologia , Ponto Isoelétrico , Análise de Sequência com Séries de Oligonucleotídeos , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Triticum/enzimologia , Triticum/crescimento & desenvolvimento , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , alfa-Amilases/biossíntese
8.
J Exp Bot ; 57(4): 877-85, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16467408

RESUMO

Late maturity alpha-amylase (LMA) in wheat is a genetic defect that may result in the accumulation of unacceptable levels of high pI alpha-amylase in grain in the absence of germination or weather damage. During germination, gibberellin produced in the embryo triggers expression of alpha-Amy genes, the synthesis of alpha-amylase and, subsequently, cell death in the aleurone. LMA also involves the aleurone and whilst LMA appears to be independent of the embryo there is nevertheless some evidence that gibberellin is involved. The aim of this investigation was to determine whether the increase in alpha-amylase activity in LMA-prone genotypes, like alpha-amylase synthesis by aleurone cells in germinating or GA-challenged grains, is followed by aleurone cell death. Programmed cell death was seen in aleurone layers from developing, ripe and germinated grains using confocal microscopy and fluorescent probes specific for dead or living cells. Small pockets of dying cells were observed distributed at random throughout the aleurone of ripening LMA-affected grains and by harvest-ripeness these cells were clearly dead. The first appearance of dying cells, 35 d post-anthesis, coincided with the later part of the 'window of sensitivity' in grain development in LMA-prone wheat cultivars. No dead or dying cells were present in ripening or fully ripe grains of control cultivars. In germinating grains, dying cells were observed in the aleurone adjacent to the scutellum and, as germination progressed, the number of dead cells increased and the affected area extended further towards the distal end of the grain. Aside from the obvious differences in spatial distribution, dying cells in 20-24 h germinated grains were similar to dying cells in developing LMA-affected grains, consistent with previous measurements of alpha-amylase activity. The increase in high pI alpha-amylase activity in developing grains of LMA-prone cultivars, like alpha-amylase synthesis in germinating grains, is associated with cell death, providing further evidence for the involvement of gibberellin in the LMA response.


Assuntos
Sementes/enzimologia , Triticum/enzimologia , alfa-Amilases/fisiologia , Apoptose , Temperatura Baixa , Genótipo , Germinação , Giberelinas/fisiologia , Microscopia Confocal , Sementes/citologia , Sementes/fisiologia , Triticum/citologia , Triticum/crescimento & desenvolvimento , alfa-Amilases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...